
MPI for Scalable Computing
(continued from yesterday)

Bill	Gropp,	University	of	Illinois	at	Urbana-Champaign

Rusty	Lusk,	Argonne	National	Laboratory

Rajeev	Thakur,	Argonne	National	Laboratory

One-Sided Communication

57

One-Sided Communication

§ The	basic	idea	of	one-sided	communication	models	is	to	
decouple	data	movement	with	process	synchronization
– Should	be	able	to	move	data	without	requiring	that	the	remote	

process	synchronize

– Each	process	exposes	a	part	of	its	memory	to	other	processes

– Other	processes	can	directly	read	from	or	write	to	this	memory

Process 1 Process 2 Process 3

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Process 0

Private
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Global	
Address	
Space

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

58

Comparing One-sided and Two-sided Programming

Process	0 Process	1

SEND(data)

RECV(data)

D
E
L
A
Y

Even	the	
sending	
process	is	
delayed

Process	0 Process	1

PUT(data) D
E
L
A
Y

Delay	in	
process	1	
does	not	
affect	

process	0

GET(data)

59

Advantages of RMA Operations

§ Can	do	multiple	data	transfers	with	a	single	synchronization	
operation
– like	BSP	model

§ Bypass	tag	matching
– effectively	precomputed	as	part	of	remote	offset

§ Some	irregular	communication	patterns	can	be	more	
economically	expressed

§ Can	be	significantly	faster	than	send/receive	on	systems	with	
hardware	support	for	remote	memory	access,	such	as	shared	
memory	systems

60 60

Irregular Communication Patterns with RMA

§ If	communication	pattern	is	not	known	a	priori,	the	send-
recv model	requires	an	extra	step	to	determine	how	many	
sends-recvs to	issue

§ RMA,	however,	can	handle	it	easily	because	only	the	origin	
or	target	process	needs	to	issue	the	put	or	get	call

§ This	makes	dynamic	communication	easier	to	code	in	RMA

61
61

What we need to know in MPI RMA

§ How	to	create	remote	accessible	memory?

§ Reading,	Writing	and	Updating	remote	memory

§ Data	Synchronization

§ Memory	Model

62

Creating Public Memory

§ Any	memory	created	by	a	process	is,	by	default,	only	locally	
accessible
– X	=	malloc(100);

§ Once	the	memory	is	created,	the	user	has	to	make	an	explicit	
MPI	call	to	declare	a	memory	region	as	remotely	accessible
– MPI	terminology	for	remotely	accessible	memory	is	a	“window”

– A	group	of	processes	collectively	create	a	“window”

§ Once	a	memory	region	is	declared	as	remotely	accessible,	all	
processes	in	the	window	can	read/write	data	to	this	memory	
without	explicitly	synchronizing	with	the	target	process

63

Remote Memory Access Windows and Window
Objects

64

Get

Put

Process 2

Process 1

Process 3

Process 0

=		address	spaces =		window	object

window

64

Basic RMA Functions for Communication

§ MPI_Win_create exposes	local	memory	to	RMA	operation	by	other	
processes	in	a	communicator
– Collective	operation	
– Creates	window	object

§ MPI_Win_free deallocateswindow	object

§ MPI_Put moves	data	from	local	memory	to	remote	memory
§ MPI_Get retrieves	data	from	remote	memory	into	local	memory
§ MPI_Accumulate updates	remote	memory	using	local	values
§ Data	movement	operations	are	non-blocking
§ Subsequent	synchronization	on	window	object	needed	to	ensure	

operation	is	complete

65

Window creation models

§ Four	models	exist
– MPI_WIN_CREATE

• You	already	have	an	allocated	buffer	 that	you	would	 like	to	make	
remotely	accessible

– MPI_WIN_ALLOCATE
• You	want	to	create	a	buffer	and	directly	make	it	remotely	accessible

– MPI_WIN_CREATE_DYNAMIC
• You	don’t	have	a	buffer	 yet,	but	will	have	one	in	the	future

– MPI_WIN_ALLOCATE_SHARED
• You	want	multiple	processes	on	the	same	node	share	a	buffer

• We	will	not	cover	this	model	 today

66

MPI_WIN_CREATE

§ Expose	a	region	of	memory	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– base - pointer	to	local	data	to	expose

– size - size	of	local	data	in	bytes	(nonnegative	integer)

– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)

– info - info	argument	(handle)

– comm - communicator	(handle)

int MPI_Win_create(void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

67

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
a = (void *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

68

MPI_WIN_ALLOCATE

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	integer)

– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)

– info - info	argument	(handle)

– comm - communicator	(handle)

– baseptr - pointer	to	exposed	local	data

int MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info,
MPI_Comm comm, void *baseptr, MPI_Win *win)

69

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remotely accessible memory in the
window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int),

MPI_INFO_NULL,
MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

70

MPI_WIN_CREATE_DYNAMIC

§ Create	an	RMA	window,	to	which	data	can	later	be	attached
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops

§ Application	can	dynamically	attach	memory	to	this	window

§ Application	can	access	data	on	this	window	only	after	a	
memory	region	has	been	attached

int MPI_Win_create_dynamic(…, MPI_Comm comm, MPI_Win *win)

71

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (void *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/*Array ‘a’ is now accessibly by all processes in MPI_COMM_WORLD*/

/* undeclare public memory */
MPI_Win_detach(win, a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

72

Data movement

§ MPI	provides	ability	to	read,	write	and	atomically	modify	data	
in	remotely	accessible	memory	regions
– MPI_GET

– MPI_PUT

– MPI_ACCUMULATE

– MPI_GET_ACCUMULATE

– MPI_COMPARE_AND_SWAP

– MPI_FETCH_AND_OP

73

Data movement: Get

§ Move	data	to origin,	from target

§ Separate	data	description	triples	for	origin	and	target

Origin	Process

Target	Process

RMA
Window

Local
Buffer

74

MPI_Get(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count,

target_datatype,
win)

Data movement: Put

§ Move	data	from origin,	to target

§ Same	arguments	as	MPI_Get
Target	Process

RMA
Window

Local
Buffer

Origin	Process

75

MPI_Put(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count,

target_datatype,
win)

Data aggregation: Accumulate

§ Like	MPI_Put,	but	applies	an	MPI_Op instead
– Predefined	ops	only,	no	user-defined!

§ Result	ends	up	at	target	buffer

§ Different	data	layouts	between	target/origin	OK,	basic	type	
elements	must	match

§ Put-like	behavior	with	MPI_REPLACE	(implements	f(a,b)=b)
– Per	element	atomic	PUT Target	Process

RMA
Window

Local
Buffer

+=

Origin	Process

76

Data aggregation: Get Accumulate

§ Like	MPI_Get,	but	applies	an	MPI_Op instead
– Predefined	ops	only,	no	user-defined!

§ Result	at	target	buffer;	original	data	comes	to	the	source

§ Different	data	layouts	between	target/origin	OK,	basic	type	
elements	must	match

§ Get-like	behavior	with	MPI_NO_OP
– Per	element	atomic	GET Target	Process

RMA
Window

Local
Buffer

+=

Origin	Process

77

Ordering of Operations in MPI RMA

§ For	Put/Get	operations,	ordering	does	not	matter
– If	you	do	two	concurrent	PUTs to	the	same	location,	the	result	can	be	

garbage

§ Two	accumulate	operations	to	the	same	location	are	valid
– If	you	want	“atomic	PUTs”,	you	can	do	accumulates	with	

MPI_REPLACE

§ All	accumulate	operations	are	ordered	by	default
– User	can	tell	the	MPI	implementation	that	(s)he	does	not	require	

ordering	as	optimization	hints

– You	can	ask	for	“read-after-write”	ordering,	“write-after-write”	
ordering,	or	“read-after-read”	ordering

78

Additional Atomic Operations

§ Compare-and-swap
– Compare	the	target	value	with	an	input	value;	if	they	are	the	same,	

replace	the	target	with	some	other	value

– Useful	for	linked	list	creations	– if	next	pointer	is	NULL,	do	something

§ Fetch-and-Op
– Special	case	of	Get	accumulate	for	predefined	datatypes – (probably)	

faster	for	the	hardware	to	implement

79

RMA Synchronization Models

§ RMA	data	visibility
– When	is	a	process	allowed	to	read/write	from	remotely	accessible	

memory?
– How	do	I	know	when	data	written	by	process	X	is	available	for	process	Y	

to	read?
– RMA	synchronization	models	provide	these	capabilities

§ MPI	RMA	model	allows	data	to	be	accessed	only	within	an	
“epoch”
– Three	types	of	epochs	possible:

• Fence	(active	target)
• Post-start-complete-wait	(active	target)
• Lock/Unlock	(passive	target)

§ Data	visibility	is	managed	using	RMA	synchronization	primitives
– MPI_WIN_FLUSH,	MPI_WIN_FLUSH_ALL
– Epochs	also	perform	synchronization

80

Fence Synchronization

§ MPI_Win_fence(assert, win)
§ Collective	synchronization	model	-- assume	it	

synchronizes	like	a	barrier

§ Starts	and ends	access	&	exposure	epochs	
(usually)

§ Everyone	does	an	MPI_WIN_FENCE	to	open	an	
epoch

§ Everyone	issues	PUT/GET	operations	to	
read/write	data

§ Everyone	does	an	MPI_WIN_FENCE	to	close	
the	epoch

FenceFence

Get

Target Origin

FenceFence

81

PSCW Synchronization

§ Target:	Exposure	epoch
– Opened	with	MPI_Win_post

– Closed	by	MPI_Win_wait

§ Origin:	Access	epoch
– Opened	by	MPI_Win_start

– Closed	by	MPI_Win_compete

§ All	may	block,	to	enforce	P-S/C-W	
ordering
– Processes	can	be	both	origins	and	

targets

§ Like	FENCE,	but	the	target	may	allow	
a	smaller	group	of	processes	to	access	
its	data

Start

Complete

Post

Wait

Get

Target Origin

82

Lock/Unlock Synchronization

§ Passive	mode:	One-sided,	asynchronous communication

– Target	does	not	participate	in	communication	operation

§ Shared	memory	like	model

Active	Target	Mode Passive	Target	Mode

Lock

Unlock

GetStart

Complete

Post

Wait

Get

83

Passive Target Synchronization

§ Begin/end	passive	mode	epoch
– Doesn’t	function	like	a	mutex,	name	can	be	confusing

– Communication	operations	within	epoch	are	all	nonblocking

§ Lock	type
– SHARED:	Other	processes	using	shared	can	access	concurrently

– EXCLUSIVE:	No	other	processes	can	access	concurrently

int MPI_Win_lock(int lock_type, int rank, int assert,
MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)

84

When should I use passive mode?

§ RMA	performance	advantages	from	low	protocol	overheads
– Two-sided:	Matching,	queuing,	buffering,	unexpected	receives,	etc…

– Direct	support	from	high-speed	interconnects	(e.g.	InfiniBand)

§ Passive	mode:	asynchronous one-sided	communication
– Data	characteristics:

• Big	data	analysis	requiring	memory	aggregation

• Asynchronous	 data	exchange

• Data-dependent	access	pattern

– Computation	characteristics:
• Adaptive	methods	 (e.g.	AMR,	MADNESS)

• Asynchronous	 dynamic	load	balancing

§ Common	structure:	shared	arrays

85

